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HEIDELBERG Functional Verification issues

" Hardware Designs get more and more complex

" Hand-written stimulus (directed test) is difficult to write
and maintain

" (Corner cases are difficult to catch

" Visual inspection of waveforms in order to trace a bug is a
tedious task

" “The amount of time spent on verification now exceeds the
amount of time spent on design, comprising up to 70
percent of the total development effort.”

Goal: Find bugs early and fast !!
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HEIDELBERG Verification Requirements

" Automation

" Progress measurement

" Reusability

" Easy to write and to maintain
" Find all bugs
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HEIDELBERG Verification Technologies

" Formal Verification

" Equivalence Checking
" Formal Property (Assertion) Checking

= Simulation Based Verification
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HEIDELBERG Simulation Based Verification
Scoreboard
Monitor Monitor
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" Monitor: samples interface activity
" Scoreboard: checks DUT behavior

Niels Burkhardt
Computer Architecture Group




RUPRECHT-KARLS-

UNIVERSITAT
FEIDELBERG

Formal Property Checking

" Proves the correct behavior for all operation states

" Design under test (DUT) gets translated into
boolean expressions

" No input stimulus 1s needed — the stimulus i1s
created by the tool

" Properties describe the behavior of the design
" Assertions for DUT behavior

" (Constraints for environment behavior
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Equivalence Checking

" Proves the exactly same behavior of different
design representations

" ¢.g. RTL vs. synthesis net list

" Several tools 1n the design process change the
design
" Design for Test (DFT) inserts additional logic
" Logic optimizations
" Engineering Change Orders (ECOs)
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HEIDELBERG Verification Approaches

" Transaction Based Verification
" Coverage Driven Verification
" Constrained Random Testing

" Assertion Based Verification
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HEIDELBERG Transaction Based Verification

" Abstraction from low-level signals

" Contains abstract tasks that hide the
implementation from the engineer

Transaction

" Enhances reusability
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" Coverage metrics are used to ascertain whether a
test verified a given feature

" Uncovers holes 1n the verification process

" Adjusts stimulus to check cases that have not yet
been covered

" Defines a metric to measure verification progress

" Functional coverage, code coverage, assertion
coverage, test coverage
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Constrained Random Testing

" Focuses on input stimulus generation
" Randomized stimulus 1s generated automatically

" Stimulus 1s filtered by constraints in order to
achieve only valid test patterns
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HEIDELBERG Assertion Based Verification

" Assertions check the state of a DUT

" Run concurrently and ensure correct functional
behavior

" Increase observability

" (Can be used for formal verification

property legal _data_valid;
@(posedge clk) disable iff('res_n)
(data_valid && $rose(sop)) |-> ##[1:32] ##1 eop;
endproperty : legal_data_valid

data_valid : assert property(legal _data valid);
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" Defines the functionality of the DUT
" Checks

" Coverage
" Does NOT define how the DUT has to be verified

" Coverage results are mapped to the verification
plan for analysis

Functional > Verification
& Design Plan
Specs
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Verification Plan
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Functional
Specification

*Testbenches
*Coverage Def.

*Coverage *Assertions

*Simulation

*Formal
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Universal Verification Methodology
(UVM)

" A standard for building simulation based
verification environments

" Class library based on SystemVerilog

" Key features
" Data design and stimulus generation
" Building and running a verification environment

" Coverage modeling and checking

" Focuses on re-usability

. . .,
Maintained by Accellera UVM
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Universal Verification Component

(UVC)

" Combines all components for a single interface
into a reusable package

UVC
Anaont
Agent
Sequencer
Driver| | Monitor

Sequencer: creates transactions

Driver: transform transactions
into stimulus

Monitor: samples stimulus —
turns into transactions

Agent: environment for
sequencer, driver and monitor
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" Traditional design simulation has many drawbacks

" New verification methodologies improve the task
of finding bugs

" Advanced verification methods have a high
learning curve

" But: Once established, functional verification
increases the productivity
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