RUPRECHT-KARLS-

UNIVERSITAT
FEIDELBERG

Introduction to Functional
Verification

Niels Burkhardt

Computer Architecture Group
I ——

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Overview

" Verification issues

" Verification technologies

" Verification approaches

" Universal Verification Methodology

" Conclusion

Niels Burkhardt

Computer Architecture Group
I ——

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Functional Verification issues

" Hardware Designs get more and more complex

" Hand-written stimulus (directed test) is difficult to write
and maintain

" (Corner cases are difficult to catch

" Visual inspection of waveforms in order to trace a bug is a
tedious task

" “The amount of time spent on verification now exceeds the
amount of time spent on design, comprising up to 70
percent of the total development effort.”

Goal: Find bugs early and fast !!

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Verification Requirements

" Automation

" Progress measurement

" Reusability

" Easy to write and to maintain
" Find all bugs

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Verification Technologies

" Formal Verification

" Equivalence Checking
" Formal Property (Assertion) Checking

= Simulation Based Verification

Niels Burkhardt

Computer Architecture Group
I ——

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Simulation Based Verification
Scoreboard
Monitor Monitor

A A A A

\4

" Monitor: samples interface activity
" Scoreboard: checks DUT behavior

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT
FEIDELBERG

Formal Property Checking

" Proves the correct behavior for all operation states

" Design under test (DUT) gets translated into
boolean expressions

" No input stimulus 1s needed — the stimulus i1s
created by the tool

" Properties describe the behavior of the design
" Assertions for DUT behavior

" (Constraints for environment behavior

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT
FEIDELBERG

Equivalence Checking

" Proves the exactly same behavior of different
design representations

" ¢.g. RTL vs. synthesis net list

" Several tools 1n the design process change the
design
" Design for Test (DFT) inserts additional logic
" Logic optimizations
" Engineering Change Orders (ECOs)

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Verification Approaches

" Transaction Based Verification
" Coverage Driven Verification
" Constrained Random Testing

" Assertion Based Verification

Niels Burkhardt

Computer Architecture Group
I ——

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Transaction Based Verification

" Abstraction from low-level signals

" Contains abstract tasks that hide the
implementation from the engineer

Transaction

" Enhances reusability

address

" “task” mn Verilog data

addr

data

\ 4

\ 4

Stimulus |-€dUest ,f pyT

Generator valid

\ 4

<«grant

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Coverage Driven Verification

" Coverage metrics are used to ascertain whether a
test verified a given feature

" Uncovers holes 1n the verification process

" Adjusts stimulus to check cases that have not yet
been covered

" Defines a metric to measure verification progress

" Functional coverage, code coverage, assertion
coverage, test coverage

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT
FEIDELBERG

Constrained Random Testing

" Focuses on input stimulus generation
" Randomized stimulus 1s generated automatically

" Stimulus 1s filtered by constraints in order to
achieve only valid test patterns

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Assertion Based Verification

" Assertions check the state of a DUT

" Run concurrently and ensure correct functional
behavior

" Increase observability

" (Can be used for formal verification

property legal _data_valid;
@(posedge clk) disable iff('res_n)
(data_valid && $rose(sop)) |-> ##[1:32] ##1 eop;
endproperty : legal_data_valid

data_valid : assert property(legal _data valid);

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Verification Plan

" Defines the functionality of the DUT
" Checks

" Coverage
" Does NOT define how the DUT has to be verified

" Coverage results are mapped to the verification
plan for analysis

Functional > Verification
& Design Plan
Specs

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT
FEIDELBERG

Verification Plan

vPlan: fhome fverificationSextallfswn) cagfwerificationthextoll_r2 fnp Mo fanalkysis fng wialan

o .
;;;;E vPlan =0 GD%EEJ:“W Refinement Mode: local
Perspective: [automatic top]
@ Infao Display : Relevant Metrics | * : | 5.1.1.1 - Metwork. Port to Host Port Interface
EE EEE] o2 o 5 - automatic_top : & & & Showing 13 elements =l
= EI A R 5.1 - Metwork Port i T crag T chewr | = T
racle eiks ame
= E‘ --] 1% (0F) 5.1.1 - Functional Interfaces
= [EEE Packet Length =
1 00% {0F) 5.1.1.1 - Metwark Port to Host Port Int
% [EEE Inter Packet gap
EI [eox |] sox% o 5.1.1.2 - Host Port to Metwork Port Inte || | = - Shiftaut Delay
= -- 36% (0F) 5.1.1.3 - Metwork Interface A == Each FCC
Y | 5.1.1.4 - Register File Interface R I 1o00% 0F: Errar signal
=3 --] 34% (0F) 5 1.2 - White Box & ;
- A oo o 5.1.2.1 - MP Receiver —_——— —
-3 --] 23% (0F) 5.1.2.2 - MP Sender Detans] Snurce]
w0 (WA 5.1.2 - Black Box Section i
General |
MHame Metwork Port to Host Port Interface
This wplan holds information about the coverage
Details that is collected by the werification emviranment
for the EXTOLL(r2) Xbar.
]] YWerification cope MODULE_MNETWORK_PORET
Fin: 4 Pren | & Mext | |match case Suhsertinns 0
Sirmulation

Feady

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT . .
HEIDELBERG Verification Flow
Functional
Specification

*Testbenches
*Coverage Def.

*Coverage *Assertions

*Simulation

*Formal

RUPRECHT-KARLS-

UNIVERSITAT
FEIDELBERG

Universal Verification Methodology
(UVM)

" A standard for building simulation based
verification environments

" Class library based on SystemVerilog

" Key features
" Data design and stimulus generation
" Building and running a verification environment

" Coverage modeling and checking

" Focuses on re-usability

. . .,
Maintained by Accellera UVM

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-
UNIVERSITAT
FEIDELBERG

Universal Verification Component

(UVC)

" Combines all components for a single interface
into a reusable package

UVC
Anaont
Agent
Sequencer
Driver| | Monitor

Sequencer: creates transactions

Driver: transform transactions
into stimulus

Monitor: samples stimulus —
turns into transactions

Agent: environment for
sequencer, driver and monitor

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT
HEIDELBERG UVM Testbench
Testbench
Scoreboard
Virtual Sequencer 12C UVC
S
DM
A ETH UVC
S
Y /V
HT UVC buT 12C Ethernet| 4 | DM
S < > HT Interface| [Interface
D M Interface Ethernet‘ ETH UVC
Interface — S
DM

Niels Burkhardt
Computer Architecture Group

RUPRECHT-KARLS-

UNIVERSITAT

HEIDELBERG Conclusion

" Traditional design simulation has many drawbacks

" New verification methodologies improve the task
of finding bugs

" Advanced verification methods have a high
learning curve

" But: Once established, functional verification
increases the productivity

Niels Burkhardt
Computer Architecture Group

	Introduction to Functional Verification
	Slide 2
	Functional Verification issues
	Slide 4
	Verification Technologies
	Simulation based Verification
	Slide 7
	Slide 8
	Verification Approaches
	Transaction Based Verification
	Coverage Driven Verification
	Constrained Random Testing
	Assertion Based Verification
	Slide 14
	Slide 15
	Verification Flow
	Slide 17
	Slide 18
	An Example: Extoll Verification
	Slide 20

